Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microbiol Spectr ; 11(3): e0464022, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2298025

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health threat globally, especially during the beginning of the pandemic in 2020. Reverse transcription-quantitative PCR (RT-qPCR) is utilized for viral RNA detection as part of control measures to limit the spread of COVID-19. Collecting nasopharyngeal swabs for RT-qPCR is a routine diagnostic method for COVID-19 in clinical settings, but its large-scale implementation is hindered by a shortage of trained health professionals. Despite concerns over its sensitivity, saliva has been suggested as a practical alternative sampling approach to the nasopharyngeal swab for viral RNA detection. In this study, we spiked saliva from healthy donors with inactivated SARS-CoV-2 from an international standard to evaluate the effect of saliva on viral RNA detection. On average, the saliva increased the cycle threshold (CT) values of the SARS-CoV-2 RNA samples by 2.64 compared to the viral RNA in viral transport medium. Despite substantial variation among different donors in the effect of saliva on RNA quantification, the outcome of the RT-qPCR diagnosis was largely unaffected for viral RNA samples with CT values of <35 (1.55 log10 IU/mL). The saliva-treated viral RNA remained stable for up to 6 h at room temperature and 24 h at 4°C. Further supplementing protease and RNase inhibitors improved the detection of viral RNA in the saliva samples. Our data provide practical information on the storage conditions of saliva samples and suggest optimized sampling procedures for SARS-CoV-2 diagnosis. IMPORTANCE The primary method for detection of SARS-CoV-2 is using nasopharyngeal swabs, but a shortage of trained health professionals has hindered its large-scale implementation. Saliva-based nucleic acid detection is a widely adopted alternative, due to its convenience and minimally invasive nature, but the detection limit and direct impact of saliva on viral RNA remain poorly understood. To address this gap in knowledge, we used a WHO international standard to evaluate the effect of saliva on SARS-CoV-2 RNA detection. We describe the detection profile of saliva-treated SARS-CoV-2 samples under different storage temperatures and incubation periods. We also found that adding protease and RNase inhibitors could improve viral RNA detection in saliva. Our research provides practical recommendations for the optimal storage conditions and sampling procedures for saliva-based testing, which can improve the efficiency of COVID-19 testing and enhance public health responses to the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Saliva , Clinical Laboratory Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Endoribonucleases
2.
Emerg Microbes Infect ; : 1-45, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2242558

ABSTRACT

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.

3.
J Med Virol ; 95(2): e28478, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173236

ABSTRACT

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Subject(s)
COVID-19 , Lymphopenia , Animals , Mice , SARS-CoV-2/metabolism , B7-H1 Antigen , Immune Evasion , NF-kappa B/metabolism , Up-Regulation , Cytokines/metabolism
4.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1923546

ABSTRACT

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
5.
PLoS Pathog ; 17(10): e1009704, 2021 10.
Article in English | MEDLINE | ID: covidwho-1484866

ABSTRACT

Development of effective therapeutics for mitigating the COVID-19 pandemic is a pressing global need. Neutralizing antibodies are known to be effective antivirals, as they can be rapidly deployed to prevent disease progression and can accelerate patient recovery without the need for fully developed host immunity. Here, we report the generation and characterization of a series of chimeric antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Some of these antibodies exhibit exceptionally potent neutralization activities in vitro and in vivo, and the most potent of our antibodies target three distinct non-overlapping epitopes within the RBD. Cryo-electron microscopy analyses of two highly potent antibodies in complex with the SARS-CoV-2 spike protein suggested they may be particularly useful when combined in a cocktail therapy. The efficacy of this antibody cocktail was confirmed in SARS-CoV-2-infected mouse and hamster models as prophylactic and post-infection treatments. With the emergence of more contagious variants of SARS-CoV-2, cocktail antibody therapies hold great promise to control disease and prevent drug resistance.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cricetinae , Disease Models, Animal , Female , Male , Mice
6.
PLoS One ; 16(9): e0257191, 2021.
Article in English | MEDLINE | ID: covidwho-1412845

ABSTRACT

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , Vaccinia virus/genetics , Animals , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , Female , Immunization, Secondary , Lung/pathology , Male , Mesocricetus , Mice , Mice, Inbred C57BL , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
7.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Article in English | MEDLINE | ID: covidwho-1352713

ABSTRACT

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Disease Models, Animal , 3T3 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Chlorocebus aethiops , Dependovirus/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transduction, Genetic , Vero Cells
8.
Sci Rep ; 11(1): 8761, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199318

ABSTRACT

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 µg or 5 µg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , COVID-19/prevention & control , Oligodeoxyribonucleotides/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Aluminum Hydroxide/immunology , Animals , Antibodies, Neutralizing/metabolism , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cell Line , Cricetinae , Female , Humans , Immunization , Injections, Intramuscular , Oligodeoxyribonucleotides/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL